If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-q^2+q+4=0
We add all the numbers together, and all the variables
-1q^2+q+4=0
a = -1; b = 1; c = +4;
Δ = b2-4ac
Δ = 12-4·(-1)·4
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{17}}{2*-1}=\frac{-1-\sqrt{17}}{-2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{17}}{2*-1}=\frac{-1+\sqrt{17}}{-2} $
| 34-x=92=8x | | 3z=5=14 | | 4=v/6=7 | | 12=10+n/4 | | 2/3a=-18 | | 1/2x+2/7=3 | | -4+b/4=-9 | | F=9/5x20+32 | | 5-2x-3=10x+2x+5 | | -7n-9=82 | | 10p+3=6p+8 | | -11=4-(-x) | | 0=2/3y+2 | | 6-7b=-1 | | 8+9=b | | -3=3+x/2 | | 8+3m=128 | | 0=5/2x-70 | | (2x-8)/3=-12 | | 10x-3=117 | | 5(-3+4y)=12-4(9-5y) | | 0=-3.84x^2+90x+2025 | | 5n+6=30+2n | | -3n-10=44 | | 0=3.84x^2+90x+2025 | | (z+12)/4=z/16 | | 37x+1/2-(x+1/4)=9(4x) | | -3+p/16=4 | | (30+3)2/3=x | | 1/6m-3=5 | | -7-8v=9 | | y+16y=0 |